MEDYA TOKEN Smart Contract Security Audit Report

Project Name: MEDYA TOKEN

Website: https://www.medyatoken.com/en/index.php

Contract: https://arbiscan.io/address/0x19bd362cf5d3b7830f7071f6f3b4a4503bd96230#code
Initial Price: 1 MEDYA = 10 USD+

Contract Address: 0x19Bd362cF5d3b7830f7071f6f3b4a4503bD96230

Network: Arbitrum One (Ethereum Layer 2)

Audit Date: January 2026

Team: Independent content creators dedicated to transparency, ethics, and quality journalism.

1 - Introduction and Project Overview

MEDYA TOKEN is an ERC-20 compatible token built on the Arbitrum One Layer-2 network, engineered
to support the financial independence of digital media creators.

The project’s mission is to empower free, transparent, and ethical journalism by creating a token-
based ecosystem that sustains independent content production aligned with republican and
democratic values.

The token operates on Arbitrum One, providing low transaction fees, Ethereum-level security, and
fast throughput to ensure scalability and accessibility for media-focused decentralized applications.

Project Vision

¢ To establish a self-sustaining funding model for independent media through blockchain
transparency.

* To allow content creators to operate without political or financial pressure.

¢ To create a community-governed platform where transparency and accountability are enforced
through smart contracts.

Key Features

ERC-20 Standard Compliance: Full adherence to ERC-20 standards ensures compatibility with wallets,
exchanges, and DeFi protocols.

Fixed Maximum Supply: A hard cap of 990,000 MEDYA (8 decimals) guarantees scarcity and long-
term value integrity.

EIP-2612 Permit Support: Enables gasless approvals via EIP-712 signatures with nonce and deadline
validation to prevent replay attacks.

Strict Approval Policy (Hybrid Model): Approve() allows overwriting existing allowances for full DeFi
compatibility, while permit() enforces a strict zero-reset rule (MustResetToZeroFirst) to minimize
allowance race-condition vulnerabilities in gasless approvals.

Two-Step Timelocked Ownership Transfer: Ownership transfer includes a 24-hour acceptance delay
and cancellation option for security against compromise or misclicks.

EIP-5267 Domain Descriptor: Exposes the EIP-712 domain on-chain, ensuring transparent and
verifiable permit signatures.

Enhanced Event Logging: Includes additional events such as Allowancelncreased,
AllowanceDecreased, PermitUsed, and ownership timelock notifications for full traceability.

ETH Rejection by Default: Explicitly rejects all ETH through receive() and fallback() to prevent
accidental payments and maintain ERC-20 purity.

https://www.medyatoken.com/en/index.php

Contract Structure and Detailed Code Analysis — 2.1 Tokenomics and Supply Logic

Parameter Description Value

Name Token Name MEDYA TOKEN
Symbol Token Symbol MEDYA

Decimals Smallest Unit 8

Max Supply HHard-Capped Total Supply ||990,000 x 108 units
Initial Supply |[Minted to Owner at Deployment 100% of Max Supply

The total supply of 990,000 MEDYA (8 decimals) is permanently fixed, forming the
foundation of the token’s scarcity-based economic model. The contract enforces an
immutable hard cap through compile-time constants, ensuring no additional minting
functions can ever increase the supply.

This eliminates inflation risk and maintains the token’s integrity as a deflation-resistant
digital asset.

The 8-decimal precision supports micro-transactions, enabling MEDY A to serve as both a
utility token for tipping or rewarding content creators and a store-of-value unit within the
ecosystem.

At deployment, the entire supply is minted to the deployer address, recorded as the
contract owner.

This controlled distribution enables:

* Project Funding: Allocation of tokens for content development, ecosystem growth, and
operational costs.

« Public Distribution: Staged token offerings, community rewards, and liquidity incentives.
« Liquidity Provision: Formation of initial liquidity pools on decentralized exchanges
(DEXs) or listings on centralized exchanges (CEXS).

However, centralization at genesis introduces early-stage trust dependencies:

* The owner initially holds the full supply.

* Transparent token allocation schedules and multi-signature or DAO governance are
crucial for long-term community confidence.

Additionally, the new contract introduces advanced transparency and safety mechanisms:
« Hybrid Approval Model: approve() allows overwriting existing allowances for full DeFi
compatibility, while permit() enforces a strict zero-reset rule (MustResetToZeroFirst) to
minimize allowance race-condition risks in gasless approvals.

» Two-step ownership transfer with a 24-hour timelock, adding security against key
compromise or misclicks.

« Ownership renounce with timelock and cancel option, preventing accidental or
irreversible loss of administrative control.

» EIP-5267 domain exposure, allowing on-chain verification of the EIP-712 domain used
for signatures.

» Detailed event tracking (Allowancelncreased, AllowanceDecreased, PermitUsed,
OwnershipTransferStarted, OwnershipTransferred, OwnershipRenounceStarted),
ensuring every state change is fully traceable on-chain.

Together, these enhancements reinforce immutability, auditability, and long-term
economic stability, positioning MEDYA TOKEN as a transparent and technically
resilient financial instrument for the independent media ecosystem.

ERC-20 Functions Overview

\ Function H Purpose Security Measures HStatus\
transfer() Send tokens to Balance check, zero-address validation Secure
another address
approve() g”t(r);’\r']:fiﬁnder OpenZeppelin-style overwrite allowed, Secure
PP zero-address validation
tokens
Transfer tokens Allowance verification, balance check,
transferFrom() on behalf of s Secure
zero-address validation
owner
increaseAllowance() Safely increase ||Checked arithmetic, zero-address Secure
allowance validation, emits Allowancelncreased
decreaseAllowance() Safely decrease ||Underflow protection, zero-address Secure
allowance validation, emits AllowanceDecreased
b Destroy tok,ens Balance verification, supply update, emits
urn() from caller’s Burn and Transfer Secure
balance
Gasless Nonce tracking, strict zero-reset rule
ermit() aooroval via (MustResetToZeroFirst), signature Secure
P EFI)E-2612 validation (r, s, v), domain separator
binding (EIP-712), emits PermitUsed
Two-step
transferOwnership() / :)r\;vr?;:asrh\ll\?i th Timelock delay (1 day), cancel option, Secure
acceptOwnership() 24-hour zero-address checks
timelock
Exposes EIP- .
. . . Implements EIP-5267 descriptor for
eip712Domain() 712 domaln_ verification transparency Secure
data on-chain

ERC-20 Functions Overview — Detailed Analysis
The following section provides an in-depth analysis of each ERC-20 and extended
management function implemented in the MEDY A TOKEN smart contract. Each function’s

purpose, security logic, potential risks, and design rationale are evaluated to provide a

comprehensive understanding of its robustness and transparency.

transfer(address to, uint256 value)

The transfer function enables direct peer-to-peer token transfers between addresses.
* Purpose: Facilitates tipping, payments, and micro-transactions within the ecosystem.
« Security Measures: Validates non-zero recipient addresses and sufficient sender balances;

uses checked arithmetic.
* Risks:

0 Transfers to the zero address revert, protecting against accidental burns.
o0 Poor external dApp integration could misread balances if not synced correctly.

» Advantages:

o Fully ERC-20 compliant and gas-efficient.
o Simple, predictable, and widely compatible across wallets and exchanges.

approve(address spender, uint256 value)

The approve function grants permission to another address to spend tokens on behalf of the
caller.

« Purpose: Enables integration with DEXSs, staking contracts, and DeFi tools.

* Security Measures:

0 OpenZeppelin-style behavior allows overwriting existing allowances.

0 Zero-address approvals are rejected.

* Risks:

0 Overwriting allowances may expose users to the classic ERC-20 allowance race condition if
wallets or Uls are poorly designed.

» Advantages:

0 Maximizes DeFi compatibility with routers, aggregators, and staking protocols.

0 Users may rely on increaseAllowance / decreaseAllowance for safer UX.

transferFrom(address from, address to, uint256 value)

Transfers tokens using an existing allowance.

* Purpose: Allows third-party contracts to execute automated payments or swaps.

« Security Measures:

o0 Validates non-zero recipient.

0 Checks allowance and balance before transfer.

* Risks:

0 Excessive user allowances can still lead to misuse if not managed carefully.

» Advantages:

o Fully ERC-20 compliant and integrates smoothly with DEX routers and escrow systems.

increaseAllowance(address spender, uint256 addedValue)

Safely increases an allowance amount without resetting to zero.

* Purpose: Enables incremental allowance control.

* Security Measures:

0 Zero-address validation.

o Emits both Approval and Allowancelncreased events for traceability.
* Risks:

0 Users may unintentionally increase approvals beyond intended amounts.
» Advantages:

o Offers precise control while maintaining audit transparency.

decreaseAllowance(address spender, uint256 subtractedValue)

Safely decreases an existing allowance.

* Purpose: Allows granular management of delegated spending limits.

« Security Measures:

0 Prevents arithmetic underflow.

0 Emits both Approval and AllowanceDecreased events.

* Risks:

o Incomplete revocation can leave partial permissions active.

» Advantages:

0 Enhances safety by enabling partial or total revocation of spending rights.

burn(uint256 amount)

Permanently removes tokens from circulation by reducing both balance and total supply.
* Purpose: Supports voluntary deflation and long-term value protection.

* Security Measures: Validates caller’s balance and uses checked arithmetic.

* Risks:

o Irreversible action — burned tokens cannot be recovered.

 Advantages:

o0 Strengthens scarcity-based tokenomics and user participation in deflationary strategy.

permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v,
bytes32 r, bytes32 s)

Implements EIP-2612 to enable gasless approvals via signed messages.

« Purpose: Enhances UX by eliminating the need for on-chain approve transactions.

* Security Measures:

0 Uses nonces to prevent replay attacks.

0 Verifies low-s signatures and restricts v to {27, 28}.

0 Checks signature validity against the EIP-712 domain separator (computed at
deployment).

0 Enforces a strict zero-reset rule (MustResetToZeroFirst) inside permit(), even though
approve() allows overwriting allowances.

o Emits both Approval and PermitUsed events.

* Risks:

o Off-chain tools must generate correct signatures.

» Advantages:

o Significantly reduces gas costs for frequent approval operations.

0 Widely compatible with DeFi platforms and wallet interfaces.

Ownership Management (transferOwnership / acceptOwnership / cancelOwnership /
renounceOwnership)

Implements a two-step, 24-hour timelocked ownership management system for security.

* Purpose: Reduces key compromise and misclick risks during administrative transitions and
ownership renouncement.

* Security Measures:

o Ownership acceptance is locked until 1 day after initiation (OWNERSHIP_DELAY).

o Current owner may cancel an in-progress transfer or renounce process.

0 Renounce ownership requires delayed finalization and may be canceled before completion.
0 Emits OwnershipTransferStarted, OwnershipTransferred,
OwnershipRenounceStarted, OwnershipRenounceCanceled events.

» Advantages:

0 Provides transparent and accountable admin handovers.

0 Prevents accidental or irreversible loss of administrative control.

eip712Domain()

Implements EIP-5267, exposing the domain parameters of the EIP-712 signature scheme
directly on-chain.

» Purpose: Allows external verifiers, explorers, or auditors to confirm the token’s domain
structure.

» Advantages:

o Improves auditability and signature validation transparency.

0 Reinforces cryptographic traceability for cross-chain integrations.

Final Notes

All implemented functions follow modern Solidity 0.8.25 best practices, eliminating
overflow and underflow vulnerabilities without external libraries.

The contract enhances transparency and operational safety through a hybrid approval model,
advanced event logging, timelocked ownership controls, and verifiable domain metadata.
Users and integrators should remain aware of:

* The hybrid approval model where approve() allows overwriting but permit() enforces strict
zero-reset protection.

 The permanent nature of burns.

* The 24-hour delay and cancelable flow in ownership transfers and renouncement to
maintain governance integrity.

These design choices together ensure a secure, auditable, and standards-compliant ERC-
20 implementation optimized for reliability and long-term sustainability.

2.3 Security Features

. Risk
Feature Analysis Level
approve() allows overwriting existing allowances for full DeFi
Hybrid compatibility, while permit() enforces a strict zero-reset rule Low
Approval Policy ||(MustResetToZeroFirst) to mitigate race conditions in gasless
approvals
Overflow / Solidity 0.8.25 provides automatic arithmetic checks for all
. None
Underflow operations

Implements EIP-2612 with low-s validation, restricted v values,
nonce tracking, domain separator binding, and strict zero-reset |Low
enforcement inside permit()

Permit Function
(EIP-2612)

[ETH Handling ||Rejects all ETH transfers via receive() and fallback() reverts |None |
Ownership Implements two-step ownership transfer and renounce with 24-

. . Low
Controls hour timelock and cancel options
Pausing Not implemented; contract is immutable and non-freezable by .

: : Medium
Mechanism design
Governance Centralized ownership at deployment; DAO or multi-signature .
Medium

Features governance recommended for future phases
Max Supply -, hed at 990,000 x 10° units and immutable by design None
Enforcement
EIP'5.267 On-chain domain verification enhances transparency of signed
Domain None

messages
Exposure g

Hybrid Approval Policy

The contract applies a hybrid allowance model that balances security with maximum
protocol compatibility.

* Risk Level: Low

» Advantages:

« approve() allows overwriting existing allowances, ensuring full compatibility with DeFi
routers, aggregators, and staking protocols.

« permit() enforces a strict zero-reset rule (MustResetToZeroFirst), eliminating allowance
race conditions in gasless approvals.

* Reduces approval-related attack surfaces without breaking ecosystem integrations.

« Considerations:
* Wallet Uls and integrators should encourage the use of increaseAllowance /
decreaseAllowance and short permit deadlines for optimal safety.

Overflow / Underflow Protection

Arithmetic operations are secured by Solidity 0.8.25’s built-in overflow and underflow
checks, reverting automatically on invalid arithmetic.

* Risk Level: None

» Advantages:
* Eliminates the need for external SafeMath libraries.
» Guarantees mathematical integrity across balances, allowances, and supply updates.

« Considerations:
* Any future upgrades must preserve compiler-level arithmetic safety rules.

Permit Function (EIP-2612)

Implements full EIP-2612 support with additional safeguards.

* Security Measures:

0 Enforces low-s signatures and valid v values (27 or 28).

0 Uses nonces to prevent replay attacks.

o0 Integrates EIP-712 domain separation bound to the contract and chain ID.
0 Enforces a strict zero-reset rule (MustResetToZeroFirst) inside permit(), even though
approve() allows overwriting allowances.

0 Emits both Approval and PermitUsed events for full traceability.

* Risk Level: Low

 Advantages:

* Enables gasless approvals for improved UX.

* Prevents cross-chain replay via domain binding.

* Provides full auditability through PermitUsed event logging.

* Risks:
» Faulty off-chain signature tools could cause approval failures.

ETH Handling

The contract explicitly rejects all ETH through both receive() and fallback() reverting calls.
* Risk Level: None

» Advantages:

* Prevents accidental ETH loss.

* Maintains strict ERC-20 purity, eliminating unwanted payable surfaces.

» Considerations:

» Limits extension potential for ETH-related future utilities.

Ownership Controls

Ownership management follows a two-step process with a 24-hour timelock, extended with
cancelable transfer and renounce protection mechanisms.

* Risk Level: Low

» Advantages:

* Prevents accidental or malicious instant ownership changes.

* Allows time for review and cancellation before transfer acceptance or renouncement
finalization.

» Emits OwnershipTransferStarted, OwnershipTransferred,
OwnershipRenounceStarted, OwnershipRenounceCanceled events for full visibility.
* Risks:

* Centralized control persists until governance decentralization is implemented.

Pausing Mechanism

The contract does not include a pausing feature by design.

* Risk Level: Medium

» Advantages:

» Upholds a censorship-resistant and immutable design.

« Simplifies logic and reduces gas overhead.

* Risks:

* No on-chain emergency stop for exploits or external threats.

* Requires proactive monitoring and community coordination in emergencies.

Governance Features

MEDYA TOKEN is currently governed by a single-owner model, ensuring fast decision-
making but introducing centralization risk.

* Risk Level: Medium

» Advantages:

* Enables rapid operational response and contract administration.

* Risks:

* Represents a single point of failure in case of key loss or misuse.

* Long-term trust requires transition to multi-signature or DAO governance.

Max Supply Enforcement

A fixed supply of 990,000 x 10 units is hardcoded at contract level and minted entirely at
deployment.

* Risk Level: None

 Advantages:

* Prevents any inflationary manipulation.

* Aligns tokenomics with scarcity and long-term value retention principles.

» Considerations:

« Future incentives must be sourced from circulating supply management, not minting.

EIP-5267 Domain Exposure

The contract integrates EIP-5267, allowing on-chain access to the EIP-712 domain
structure used for signatures.

* Risk Level: None

» Advantages:

* Provides verifiable proof of domain parameters for signature validation.

* Enhances cross-chain interoperability and audit transparency.

Risk Assessment and Threat Analysis

\ Risk Category H Potential Threat H Mitigation Status
Centralized Owner hqlds ful co_ntrol; key Recommend transition to multi-

loss or misuse may impact :
Control signature or DAO governance

contract governance

No pause function; contract ||Acceptable trade-off for immutability;
No Emergency . - .

cannot be halted in optional multi-sig governed pause may
Stop . .

emergencies be added in future
Hybrid Approval Overwritten aIIowan(_:es may approve:()_ Qve-rwrlte_allowed for _

expose users to classic ERC- ||compatibility; permit() enforces strict
Model -) i -

20 race conditions zero-reset protection, risk mitigated
Permit Nonce tracking, low-s enforcement,
Functionality Replay or forged signatures |restricted v values, domain-bound
(EIP-2612) signatures
ETH Sent by ETH could be accidentally Explicitly reverted via receive() and
Mistake transferred to contract fallback()

| Risk Category || Potential Threat [Mitigation Status |

Supply Inflation or unauthorized Hard-capped at 990,000 x 102,
Manipulation minting immutable constant

Ownership Instant transfer risk or admin | Two-step timelocked transfer and
Transition hijack renounce with cancel option

Arithmetic underflow / Prevented by Solidity 0.8.25 checks
overflow or approval race and hybrid approval safeguards

Signature Domain |[Domain mismatch or replay |[EIP-5267 exposes domain on-chain
Integrity across chains for validation

Allowance Bugs

Centralized Control

The contract begins with a single owner who controls administrative functions such as
ownership transfer and renouncement.

* Risks:
o Loss or compromise of the owner’s private key can jeopardize the ecosystem.
0 Community trust may decline if governance remains centralized too long.

 Mitigation Recommendation:

Transition to a multi-signature wallet or DAO governance structure as the project grows to
distribute authority and reduce single-point-of-failure risk.

No Emergency Stop

No pausing mechanism is implemented. This is an intentional design choice reflecting
decentralization principles.

» Advantages:
« Upholds immutable and censorship-resistant operation.

* Risks:
» Lack of on-chain mitigation during unforeseen vulnerabilities or attacks.

» Mitigation Recommendation:

Introduce an optional multi-signature or DAO-governed pause mechanism in future
iterations without compromising the immutability of token logic.

Hybrid Approval Model

The contract implements a hybrid allowance policy combining security with full DeFi
compatibility.

 Advantages:

« approve() allows overwriting allowances, ensuring router and protocol compatibility.
« permit() enforces a strict zero-reset rule (MustResetToZeroFirst), eliminating race
conditions in gasless approvals.

« Considerations:
 Wallet interfaces should encourage increaseAllowance / decreaseAllowance and short
permit deadlines to minimize user error.

Permit Functionality (EIP-2612)
Implements strict signature validation under EIP-2612.

« Security Mechanisms:

0 Nonce tracking on each valid signature to prevent replay.

o Low-s enforcement and restricted v values (27 or 28) for valid ECDSA recovery.

o0 Signatures bound to the EIP-712 domain using chainld and contract address.

o0 Strict zero-reset enforcement inside permit(), even though approve() allows overwriting.

» Risk Level: Low

» Recommendation:
Continue maintaining compatibility testing with off-chain signature providers and wallet
SDKs.

ETH Sent by Mistake

The contract rejects ETH through explicit reverts in both receive() and fallback() using the
NoETHY() custom error.

* Risk Level: None

» Advantages: Prevents accidental ETH loss and keeps the contract strictly isolated to ERC-
20 logic.

» Consideration: Should be clearly documented in user interfaces and exchange integration
guides.

Supply Manipulation

A fixed hard cap (maxSupply = 990,000 x 10®) is immutable and enforced at compile time.
* Risk Level: None

» Advantages:

» No mint function or administrative privilege exists to create new tokens.

* Total supply is permanently verifiable on-chain.

» Consideration: Future token incentives must be sourced exclusively from existing
circulating supply.

Ownership Transition
Ownership transfers follow a two-step confirmation process with a 24-hour timelock:

1. The current owner calls transferOwnership(newOwner) to initiate the process.
2. The new owner must wait 24 hours before calling acceptOwnership().

» Advantages:

« Prevents impulsive or malicious instant transfers.

* Allows the current owner to cancel the transfer during the waiting period.
« Supports institutional-grade governance safety.

* Risk Level: Low

* Recommendation:
Maintain this timelocked and cancelable ownership model permanently for long-term
governance security.

Allowance Bugs

Allowances are protected by Solidity 0.8.25 arithmetic checks and the contract’s hybrid
approval safeguards.

* Risk Level: None

 Advantages:

* No overflow or underflow vulnerabilities due to compiler-level protection.

* Deterministic allowance updates with full traceability via Allowancelncreased and
AllowanceDecreased events.

« permit() eliminates race conditions through strict zero-reset enforcement, even though
approve() allows overwriting for compatibility.

Signature Domain Integrity (EI1P-5267)

The eip712Domain() function exposes the contract’s EIP-712 domain parameters on-
chain, enabling external verifiers and auditors to validate domain integrity.

* Risk Level: None

» Advantages:

* Prevents off-chain domain spoofing and replay across chains.

» Strengthens cross-chain interoperability and cryptographic audit transparency.

Final Thoughts

The updated risk profile demonstrates that MEDYA TOKEN’s architecture prioritizes
immutability, verifiability, and operational safety.

While centralized ownership remains a temporary design for administrative control, the
combination of a hybrid approval model, timelocked and cancelable ownership
management, strict ETH rejection, and on-chain domain transparency substantially
reduces the overall attack surface.

Future improvements should focus on:

» Transitioning to multi-signature or DAO-based governance,

« Establishing optional emergency response procedures, and

» Maintaining continuous monitoring and periodic independent security audits to ensure
long-term resilience.

Technical Observations and Notes — Detailed Breakdown
Solidity 0.8.25 with Built-in Arithmetic Checks

The MEDYA TOKEN contract targets Solidity 0.8.25, benefiting from automatic overflow and
underflow reverts. This removes the need for external SafeMath libraries and guarantees
mathematical integrity for balance and allowance operations across transfers, approvals, and burns.
The code applies limited and explicit unchecked blocks only where preconditions guarantee safety,
optimizing gas usage while preserving correctness.

Minimal Reentrancy Surface by Design

The ERC-20 core flows perform no external calls, significantly reducing the reentrancy surface even
without a guard modifier.

State updates are executed before event emissions, and no callbacks are invoked to untrusted
contracts. Combined with Solidity 0.8.x safety checks, this design makes the token’s transfer paths
highly resistant to reentrancy-style attacks in practice.

Hybrid Approval Model
The contract implements a hybrid allowance policy rather than a USDT-style strict model.

approve() allows overwriting existing allowances to preserve full DeFi compatibility, while permit()
enforces a strict zero-reset rule (MustResetToZeroFirst) to eliminate race conditions in gasless
approvals.

This approach balances maximum ecosystem compatibility with enhanced security for off-chain
approvals.

Integrations should encourage the use of increaseAllowance / decreaseAllowance and short permit
deadlines to minimize user error.

Permit (EIP-2612) with Strict Signature Hygiene
The permit implementation follows EIP-2612 with advanced cryptographic safeguards:

* Nonce usage prevents replay attacks and is incremented only after successful verification.

¢ Low-s enforcement and restricted v € {27, 28} ensure valid ECDSA recovery.

¢ The EIP-712 domain separator is bound to block.chainid and address(this) and computed at
deployment, preventing cross-chain replay.

e A strict zero-reset rule is enforced inside permit(), even though approve() allows overwriting
allowances.

Together, these measures provide gasless approvals with robust anti-replay guarantees and
predictable allowance semantics.

On-chain Domain Discoverability (EIP-5267)

The contract exposes its EIP-712 domain via the eip712Domain() view in compliance with EIP-5267.
Auditors, wallets, and explorers can retrieve domain fields on-chain to validate signatures and tooling
assumptions, improving transparency and reducing integration errors.

Two-step Ownership Transfer with 24-hour Timelock

Ownership transfer is not instantaneous. The current owner calls transferOwnership(newOwner),
which sets a pending owner and an ETA equal to block.timestamp + 1 day.

Only after the delay may the pending owner call acceptOwnership(). The current owner may cancel
the process while pending.

This mechanism reduces misclick risk and provides protection against compromised administrative
keys.

Related events include OwnershipTransferStarted, OwnershipTimelockSet, OwnershipTransferred,
OwnershipTransferCanceled.

Explicit ETH Rejection with Custom Error

Both receive() and fallback() revert with the dedicated NoETH() custom error, ensuring the contract
cannot accept ETH accidentally or through arbitrary calls.
This strictly limits the contract’s surface area to ERC-20 behavior and prevents trapped funds.

Custom Errors and Event Richness for Auditability

The contract uses custom errors (OnlyOwner, ZeroAddress, InsufficientBalance, AllowanceExceeded,
PermitExpired, BadS, BadV, InvalidSignature, MustResetToZeroFirst, etc.) for gas-efficient and explicit
failure modes.

It emits granular events such as Allowancelncreased, AllowanceDecreased, PermitUsed, alongside
standard ERC-20 Transfer and Approval events, enhancing on-chain traceability and simplifying off-
chain monitoring.

Clear Read API and Constants

Convenience getters (getAllowance, getBalance, getTotalSupply, getOwner, getPendingOwner)
improve integrator UX.

Critical parameters are defined as compile-time constants, including maxSupply = 990,000 x 108 and
OWNERSHIP_DELAY = 1 days, reinforcing immutability guarantees.

Deterministic Initialization

In the constructor, the contract computes the DOMAIN_SEPARATOR using the token name, version
“1”, block.chainid, and the contract address.

It then mints the entire maxSupply to the deployer (initial owner) and emits the initial Transfer event
from the zero address, establishing a verifiable genesis state on-chain.

Implications for Integrators

¢ Wallets and dApps should implement the hybrid allowance flow and clearly inform users.

¢ Off-chain signature tools must respect EIP-712 domain parameters and low-s / v validation rules.
¢ Exchanges and indexers can query eip712Domain() to validate domain assumptions.

¢ Administrative key management benefits from the 24-hour timelock, but long-term governance
should transition to multi-signature or DAO-based control for resilience.

ETH Rejection via Fallback / Receive Prevents Accidental
Fund Transfers and Potential VVulnerabilities

The MEDYA TOKEN contract is explicitly designed not to accept ETH. Both receive() and
fallback() functions immediately revert with the custom error NOETHY(). This ensures that
any attempt to send native Ether to the token contract address fails atomically and cannot lock
funds. This behavior is implemented directly in the code and documented with clear NatSpec
comments, reinforcing the token’s ERC-20-only scope.

1. User Protection

Users sometimes mistakenly send ETH to ERC-20 contracts expecting an interaction. By
reverting such transactions, the contract prevents irretrievable losses and keeps balances
consistent across explorers and accounting tools.

2. Security
Disallowing ETH transfer paths eliminates potential attack surfaces related to payable
handlers, including fallback misuse patterns that historically enabled reentrancy flows in other

projects. MEDY A keeps transfer logic minimal and performs no external calls in core ERC-
20 paths, which further reduces reentrancy exposure in practice.

This strict ETH rejection policy underlines the contract’s role as a pure token utility
component and simplifies audits and integrations by removing native currency handling
entirely.

Centralized Ownership and Timelocked Governance
Controls

Ownership is initially centralized under a single address. While effective for early-stage
projects, transitioning to a DAO or multi-signature governance model is recommended for
long-term sustainability.

At deployment, the entire maxSupply is minted to the deployer, who becomes the initial
owner. The contract implements a two-step, timelocked ownership transfer mechanism
requiring:

1. The current owner to call transferOwnership(newOwner), starting the process with
an ETA of current time + 24 hours.
2. The pending owner to call acceptOwnership() only after the delay expires.

The current owner may also cancel a pending transfer. All transitions emit events for full on-
chain traceability.

Risks of Centralization:
* Loss or compromise of the owner’s private key may jeopardize governance.
* Prolonged single-key control may erode community confidence even with a timelock buffer.

Mitigation Recommendations:

» Transition to a multi-signature or DAO-governed model as adoption grows.

* Preserve the 24-hour timelock permanently, even under multi-sig governance, to reduce
operational error and provide community reaction time.

Additionally, the contract exposes an EIP-5267 on-chain domain descriptor through
eip712Domain(), improving external verification of signed messages and supporting
transparent governance tooling based on EIP-712.

No Pause Functionality and Emergency Handling
Philosophy
The contract does not implement a pausing mechanism. This is an explicit design choice

favoring simplicity, immutability, and censorship resistance. There is no administrative
switch to halt transfers or approvals, and the code paths reflect this minimalism.

Instead, safety relies on preventative controls:

« Solidity 0.8.25 arithmetic checks

» Strict ETH rejection

» Hybrid approval model

» Timelocked and cancelable ownership transfer

Implications:
* Pros: Smaller attack surface, predictable execution, resistance to unilateral censorship.
« Cons: No on-chain emergency stop in the event of unforeseen vulnerabilities or attacks.

Recommendation:

If governance philosophy permits, consider an optional multi-sig or DAO-governed pause
mechanism in a future iteration. Otherwise, maintain strong monitoring procedures and
publish clear incident-response playbooks. Where signatures are involved, leverage the on-
chain EIP-5267 domain exposure to reduce operational mistakes under stress conditions.

Conclusion

The MEDYA TOKEN smart contract exhibits a refined, security-oriented, and standards-
compliant architecture built on Solidity 0.8.25 and modern EIP extensions. Its structure
prioritizes immutability, predictable behavior, and strict adherence to the ERC-20
specification, while extending functionality through EIP-2612 permit and EIP-5267 domain
descriptor support.

The implementation effectively supports the project’s mission of establishing a
decentralized, community-supported ecosystem for independent media and ethical
journalism by providing a technically sound, auditable, and sustainable on-chain foundation.

Security and Functionality Evaluation

« No critical vulnerabilities were detected in the current version. Unit testing and code
review confirm correct balance updates, allowance handling, and ownership flows.

* The contract implements a hybrid approval model: approve() preserves DeFi
compatibility, while permit() enforces a strict zero-reset rule, eliminating race conditions in
gasless approvals.

» Permit (EIP-2612) integrates advanced signature hygiene: low-s enforcement, valid v
values, and nonces guaranteeing one-time usability.

» EIP-5267 domain exposure enables verifiers to confirm EIP-712 parameters on-chain,
improving auditability and cross-chain tooling reliability.

» Ownership follows a two-step, 24-hour timelocked transfer with cancel option,
mitigating accidental or malicious administrative actions.

« Solidity 0.8.25 arithmetic checks ensure overflow, underflow, and division errors revert
automatically, preserving accounting integrity.

* The contract strictly rejects ETH through NoETHY(), protecting users from accidental fund
loss and narrowing the attack surface.

« All functions emit structured events (Allowancelncreased, AllowanceDecreased,
PermitUsed, etc.), enhancing traceability and compliance review.

* The immutable maxSupply = 990,000 x 10® enforces scarcity and long-term economic
predictability.

Collectively, these elements form a robust, auditable, and gas-efficient framework suitable
for real-world adoption in decentralized media funding.

Recommendations for Future Development

1. Optional Emergency Pause Mechanism
If the community later prioritizes risk management, introduce a multi-sig or DAO-controlled
pause without altering existing supply logic.

2. Multi-Signature or DAO Governance Transition
Move toward shared administrative control to minimize single-key dependency and
strengthen decentralization and trust.

3. Continuous Security Monitoring and Periodic Audits
Implement automated monitoring for anomalous behavior and commission independent audits
before future upgrades or major integrations.

Final Verification Summary

The contract successfully passed 37 / 37 unit tests, covering edge-case behaviors including
EIP-2612 compliance, hybrid approval resets, domain-separator validation, ownership
delay logic, and event emission accuracy.

These results confirm the contract’s stability, reliability, and alignment with industry-
leading smart-contract security practices.

Test Results Summary (HARDHAT)

Comprehensive unit and integration testing was performed using the Hardhat testing
framework with Mocha and Chai assertion libraries.

The test suite validates every critical aspect of the MEDYA TOKEN smart contract, covering
ERC-20 compliance, ownership transfer and renounce flows (two-step timelocked), allowance
management helpers, rescueERC20 safety behavior, and the EIP extensions (EIP-2612 and
EIP-5267).

All tests executed successfully. The Solidity coverage report confirms 100% statement,
function, and line coverage, with branch coverage at 92.5%. These metrics demonstrate
the contract is both technically sound and security-hardened under extensive failure-path
testing.

Overview

A total of 102 test cases were executed across a broad set of functional domains, including a
comprehensive set of negative (failure) scenarios validating custom errors and revert
behavior.

Tests were executed on HardhatEVM v2.26.0 (EVM target: paris) with compiler output
from Solidity 0.8.25.

Execution time: approximately 4 to 7 seconds depending on whether standard test run or
coverage instrumentation was used. All assertions passed.

Key Functional Areas Covered

Initialization and Metadata Validation

o Verified token parameters including name, symbol, decimals, and total supply/max
supply invariants.

« Confirmed constructor behavior minted the correct supply to the deployer and emitted
the initial Transfer event.

Balance Transfers and Events

o Validated standard ERC-20 transfers, including self-transfer and zero-value transfer
cases.

o Confirmed correct event emission and rejection of zero-address transfers and over-
balance transfers.

Allowance Management and Helper Functions

o Tested approve, transferFrom, increaseAllowance, and decreaseAllowance behaviors.
« Validated correct math behavior, underflow protection, and event emissions:
o Approval

o Allowancelncreased
o AllowanceDecreased
o Confirmed allowance edge cases such as exact-zero transitions and revert paths when
decreasing below zero.

Burn Functionality

o Confirmed burns reduce both balanceOf and totalSupply.
« Verified reverts for invalid burn amounts (insufficient balance).

Ownership Transfer and Timelock Flow

o Exhaustively tested the two-step ownership transfer flow (initiate — timelock wait —
accept).
o Covered:
o onlyOwner enforcement
o zero-address transfer ownership rejection
o acceptOwnership before ETA reverts
o acceptOwnership by non-pending owner reverts
o cancelOwnershipTransfer behavior (state reset and event emission)
« Ensured event emissions:
OwnershipTransferStarted
o OwnershipTransferred
o OwnershipTransferCanceled
o OwnershipTimelockSet

@)

Ownership Renounce Flow (Two-Step Timelocked)

« Verified startRenounceOwnership and finalizeRenounceOwnership behaviors.
o Covered:

o finalize before ETA reverts

o cancelRenounceOwnership state resets and event emission

o post-renounce owner-only actions must revert
« Ensured event emissions:

o OwnershipRenounceStarted

o OwnershipRenounceCanceled

o OwnershipTransferred (to zero address)

ETH Rejection Logic

« Confirmed both receive() and fallback() revert with custom NoETH() error on any
direct ETH call, ensuring ETH cannot be accidentally trapped.

Permit Functionality (EIP-2612)
Validated the permit system extensively, including:

e Correct DOMAIN_SEPARATOR validation and EIP-712 digest formation
o Valid signature creation and successful permit usage

e Nonce incrementation after each valid permit

o Expiration checks and replay protection

e Low-s and valid-v enforcement for ECDSA integrity

o Reverts on:

zero spender

invalid signature

malformed v values

wrong chainld / verifying contract mismatches

MustResetToZeroFirst rule enforcement when attempting non-zero to non-zero
allowance change via permit

O O O O O

EIP-712 and EIP-5267 Domain Verification

o Verified eip712Domain() returns the expected tuple values (name, version, chainld,
verifyingContract, salt, extensions).
e Cross-checked DOMAIN_SEPARATOR matches the computed hash.

Arithmetic Integrity and Supply Invariants

o Confirmed absence of mint() and cap() functions by design.

« Validated that totalSupply equals the sum of balances after randomized transfers
(supply invariant).

o Confirmed Solidity 0.8.25 built-in safety reverts on arithmetic underflow/overflow in
relevant paths.

RescueERC20 Safety

o Verified rescueERC?20 cannot rescue the MEDY A token itself
(CannotRescueOwnToken).
o Verified reverts for:
o zero recipient address
o tokens that revert on transfer
o tokens that return false on transfer
o Verified success path emits Rescued(token, to, amount) event.

Negative and Edge Case Testing
The suite intentionally included failure-state assertions for robustness validation:

e Approving to zero address reverts

o Transfers exceeding balance revert

« transferFrom without allowance or with insufficient balance reverts
o decreaseAllowance below zero reverts

e permit expired or nonce reuse reverts

« invalid signature components (v, s) revert

e domain mismatch (chainld or verifyingContract) reverts

e ownership acceptance before ETA reverts

« ownership acceptance by non-pending owner reverts

o fallback invocation reverts

« renounce and transfer ownership mutual exclusion paths are enforced correctly

All failure scenarios reverted as expected, confirming defensive behavior under invalid inputs.

Coverage Report Summary

\ Metric HCoverage Status|
\StatementsHlOO% |
\Branches H92.5% |
Functions ||100% |
Lines [|200% |

No uncovered statements, functions, or lines exist in medya.sol. Branch coverage remains
below 100% due to multiple conditional guard combinations, but all critical security and
correctness paths (ownership, permit validation, allowance math, ETH rejection,
rescueERC?20) are fully exercised.

Result

All 102 test cases passed successfully, achieving a 100% execution success rate.

This Hardhat test suite validates the correctness, security, and operational safety of the
MEDYA TOKEN contract, supporting production deployment readiness for mainnet
environments and integrations with explorers, wallets, and dApps.

Final Note

The MEDYA TOKEN smart contract, as tested in its current version, represents a mature and
security-conscious ERC-20 implementation enhanced with EIP-2612 (permit), EIP-5267
(domain descriptor), explicit ETH rejection, robust event coverage, and a 24-hour timelocked
two-step ownership model (transfer and renounce).

The architecture remains deliberately minimal yet hardened, emphasizing correctness,
auditability, and operational clarity. The deterministic supply model, strict permit rule
(MustResetToZeroFirst), explicit error handling, and full statement/function/line coverage
support a high-assurance baseline for real-world deployment.

Disclaimer

This report reflects automated unit and integration testing results generated via the official
Hardhat test suite and solidity-coverage output for the MEDY A TOKEN smart contract as
executed in the current codebase state.

No test suite can guarantee absolute immunity from vulnerabilities. Future compiler updates,
EVM changes, integration risks, or new attack techniques may introduce unforeseen behavior.

A continuous security lifecycle is recommended, including monitoring, re-testing after any
modification, and independent review for each third-party integration or exchange listing.

E¥ Administrator: Windows PowerShell - O X

PS C:\xampp\htdocs\medya-token-tests> npx hardhat test
[dotenv@17.2.3] injecting env (2) from .env — tip: 0 encrypt with Dotenvx: https://dotenvx.com

MEDYA - allowance helpers edge cases

MEDYA - increase/decrease allowance helpers

MEDYA TOKEN — Allowance edges

MEDYA - maximum supply constraint

MEDYA TOKEN - Core

MEDYA - coverage patches for missed branches
[OK] acceptOwnership reverted without pending owner (branch covered).

[OK] permit zero-spender reverted (branch covered).
[OK] permit invalid-S reverted (branch covered).

MEDYA - EIP-712 domain views
[OK] eip712Domain() tuple validated.

[OK] DOMAIN_SEPARATOR matches expected hash.

£¥ Administrator: Windows PowerShell - (] X

MEDYA - EIP-712 domain views
[OK] eip712Domain() tuple validated.

[OK] DOMAIN_SEPARATOR matches expected hash.

MEDYA - Events and zero-amount edges

MEDYA - simple invariants

MEDYA TOKEN (Full Suite)

MEDYA - ownership cancel flow coverage
[OK] cancelOwnershipTransfer covered: event + state reset verified.

MEDYA — Ownership negative and edge cases

MEDYA - ownership timed or two-step flow

MEDYA - Ownership flow

E¥ Administrator: Windows PowerShell - () X

Ownership flow

extra checks

Permit more edges

MEDYA - Permit negative signatures

Permit extra hardening

TOKEN — Permit (EIP-2612)

MEDYA - rescueERC20 extra security

MEDYA - Extra security regression

£¥ Administrator: Windows PowerShell - (] X

MEDYA - Extra security regression

MEDYA - Security & Negative Paths
ERC20 core negative paths

Ownership hardening

RescueERC20 safety

ETH rejection

MEDYA

MEDYA - view helper functions coverage
[OK] getAllowance() returned correct value.

E¥ Administrator: Windows PowerShell - O X

MEDYA - view helper functions coverage
[OK] getAllowance() returned correct value.

[OK] getBalance() called successfully.
[OK] getTotalSupply() called successfully.

[OK] getOwner() returned correct owner.

PS C:\xampp\htdocs\medya-token-tests> npx hardhat coverage
[dotenv@l7.2.3] injecting env (2) from .env — tip: O prevent building .env in docker: https://do
tenvx.com/prebuild

> solidity-coverage: v0.8.16

Instrumenting for coverage...

medya.sol

Coverage skipped for:

Compilation:

Compiled 10 Solidity files successfully (evm target: paris).

Network Info

> HardhatEVM: v2.26.0
network: hardhat

EX Administrator: Windows PowerShell - O X

Network Info

» HardhatEVM: v2.26.0
network: hardhat

MEDYA - allowance helpers edge cases

MEDYA - increase/decrease allowance helpers

MEDYA TOKEN — Allowance edges

MEDYA - maximum supply constraint

MEDYA TOKEN — Core

MEDYA - coverage patches for missed branches
[OK] acceptOwnership reverted without pending owner (branch covered).

[OK] permit zero-spender reverted (branch covered).

[OK] permit invalid-S reverted (branch covered).

EX Administrator: Windows PowerShell - O X

MEDYA - EIP-712 domain views
[OK] eip712Domain() tuple validated.

(41ims)
[OK] DOMAIN_SEPARATOR matches expected hash.

MEDYA - Events and zero-amount edges

MEDYA - simple invariants

MEDYA TOKEN (Full Suite)

MEDYA - ownership cancel flow coverage
[OK] cancelOwnershipTransfer covered: event + state reset verified.
(4Sms)

MEDYA - Ownership negative and edge cases

MEDYA - ownership timed or two-step flow

MEDYA - Ownership flow
(56ms)

E¥ Administrator: Windows PowerShell - () X

MEDYA - Ownership flow

Permit extra checks

Permit more edges

negative signatures

Permit extra hardening

TOKEN - Permit (EIP-2612)
(U46ms)

MEDYA - rescueERC20 extra security

(69ms)

MEDYA - Extra security regression

£¥ Administrator: Windows PowerShell - (] X

MEDYA - Extra security regression

MEDYA - Security & Negative Paths
ERC20 core negative paths

Ownership hardening

RescueERC20 safety

ETH rejection

MEDYA

MEDYA - view helper functions coverage
[OK] getAllowance() returned correct value.

E¥ Administrator: Windows PowerShell

MEDYA - view helper functions coverage
[OK] getAllowance() returned correct value.

[OK] getBalance() called successfully.
[OK] getTotalSupply() called successfully.

[OK] getOwner() returned correct owner.

% Stmts | % Bra

./coverage/ ./coverage. json
PS C:\xampp\htdocs\medya-token-tests> npx hardhat testnpx hardhat test,

